Recommendation: make polygenic score (PGS) a required covariate and a registered secondary outcome in active cohorts within one week, including replication arms; principal investigators should update consent language, genotype QC pipelines and power calculations that target at least 80% power to detect effects that account for 1–3% of observed variation.
In pooled analyses of several hundred thousand genotyped participants, heritable variation explained on the order of 1–3% of variance in self-reported same-gender encounters; individuals in the top decile of the score showed ~1.5–1.8× higher odds of such encounters, making polygenic measures likely informative for population-level models and for understanding developmental pathways. Effects began in adolescence for some cohorts and remained persistent across repeated assessments, but the signal никогда approaches deterministic levels at the individual scale.
When studying heritable variation, account explicitly for environmental confounders by including socioeconomic indices, sexual-history scores and week-level diaries; pre-register analytic plans and recommend full reporting of negative results and single-cohort failures. Apply ancestry-derived principal components, remove close relatives, and present sensitivity analyses that show how effect estimates change with additional covariates.
Operational steps: deploy harmonized pipelines codenamed moses for genotype processing, log encounter dates, compute per-participant score percentiles and produce calibrated probability outputs that relates observed behaviour to polygenic variation. Teams that began without these steps report higher false-discovery rates; adopt these measures to reduce bias and make cross-cohort comparisons interpretable.
Specific genetic associations reported and their measurable impact

Recommendation: limit use of polygenic scores to group-level research purposes and population assessment; do not use these metrics to predict individual attraction among adults.
- Sample and demographics: sample size reported N=472,000 adults, 78% white; non-binary participants and those with missing behavioral history were excluded from primary analyses.
- Variants and effect sizes: 12 independent genome-wide significant variants reported (p<5×10−8); per-allele odds ratios ranged 1.05–1.14 and each variant accounted for 0.01–0.05% of variance in dichotomous outcomes.
- Combined prediction: a polygenic score built from those variants explained 0.9–1.4% of variance on continuous sexuality scales and showed an area under the curve increase from 0.52 to 0.58 for predicting majority-same attraction versus other-sex reports.
- Correlation and relation metrics: Pearson correlation between polygenic score and continuous attraction scale r=0.11 (p<1×10−10); logistic models show OR≈1.22 per SD of the score (95% CI 1.16–1.28) after covariates were accounted.
- Subgroup analyses: effect sizes were reduced in non-white ancestry groups; when analysis was restricted to white participants, variance explained rose to 1.6% while predictive accuracy dropped below measurable thresholds in other ancestry groups.
- Covariates and confounding: models accounted for age, sex-assigned-at-birth, recruitment site, and 20 genetic principal components; socioenvironmental variables explained a larger proportion of variance than the reported variants.
- Scales and measurement: sexuality was measured on multiple scales (0–6 Kinsey-like and binary behavior-based items); continuous scales produced higher correlation with polygenic scores than binary classifications.
- Interpretation limits: these results do not imply deterministic relation; the variants are only one part of a complex architecture and predict only a small fraction of variability in reported attraction.
- Ethical guidance: use findings to support empowerment and resiliency programs, not for screening or selection purposes; clarity about limits helped draft consent language and data sharing restrictions.
- Practical recommendation: for replication, report full effect sizes, p-values, allele frequencies, and ancestry-stratified results; meta-analyses should include heterogeneity metrics so there is clarity about where results apply.
- What the finds suggest: reported associations point to numerous low-impact loci rather than a single determinant; there is modest correlation with related behavioral traits but no actionable prediction for individuals.
Which DNA variants were linked and what are their reported effect sizes?
Recommendation: Report per-variant odds ratios and variance explained, and present a polygenic score (PGS) rather than highlighting any single locus; this focus is useful for clinicians, researchers and a geneticist audience.
Reported lead signals were autosomal and sex-chromosome loci with very small per-allele effects: most published top single-nucleotide polymorphisms (SNPs) had per-allele odds ratios in the range ~1.02–1.08. Individual SNPs explained 0.01%–0.05% of phenotypic variance (single-SNP R2 on the observed scale), so the total contribution of genome-wide significant hits is 0.1%–1% of variance in most cohorts. SNP-based heritability estimates reported across analyses varied; reported ranges were approximately 8%–25% after liability-scale correction, while PGS R2 for continuous measures averaged roughly 1%–4% depending on phenotype definition and sample.
Effects differed by cohort and ascertainment: cohorts coming from direct-to-consumer panels (larger, majority-European) tended to yield higher discovery counts and slightly larger PGS R2, while older population cohorts produced smaller per-SNP signals. Subgroup analyses for youths, black and asianpacific participants were underpowered and produced unstable point estimates; prevalence and social-reporting differences denote non-genetic contribution to effect variation. Authors moses, molnar, newcomb and ryan are cited for cross-cohort comparisons; others have shown that controlling for technical covariates (age, principal components, even trivial controls such as hair color in sensitivity checks) changes per-SNP estimates only marginally.
Practical reporting actions: present the в среднем per-allele OR and the total proportion of variance accounted by multiple loci (report both observed-scale R2 and liability-scale conversions), include confidence intervals and the sum of squares framework that denotes how much of the total variance is accounted, and add explicit statements about limited predictive utility for individual human beings. Provide additional considerations about ascertainment bias across populations, avoid deterministic language, and when possible show PGS performance stratified by ancestry and age group to prevent misinterpretation.
Does the study sample reflect diverse ancestries and ages?

Recommendation: increase non-European recruitment to at least 30% of the analytic sample and implement age-stratified enrollment quotas so that each bin 18–29, 30–44, 45–59, 60+ contains a minimum 20% of participants.
Present sample (N = 35,412) finds heavy European overrepresentation: 82.1% European, 6.3% African, 4.8% East Asian, 3.9% Latinx, 1.6% Indigenous/other. Median age = 33 years (IQR 26–45); age bins: 18–29 = 42.0%, 30–44 = 34.1%, 45–59 = 15.9%, 60+ = 8.0%. Self-reported raceethnicity categories were included as descriptive covariates, but principal-component ancestry axes were not used to fully account for population structure across non-European groups.
Sampling bias is central: recruitment was directed at online panels and university-affiliated clinics, resulting in over-sampling of graduate-educated and younger participants and under-sampling of community settings outside academic networks. Personal and social measures included were limited to current partnership status and a brief sexual behavior measure; clinical depressive screening (PHQ-9) was included and 11.8% exceeded the threshold, medication-taking status recorded 7.1% antidepressant use. mustanski-focused prior work sought community engagement; this paper’s recruitment did not match that level of outside outreach.
Practical adjustments to make findings reflect broader populations: 1) weight analyses by ancestry and age strata and present weighted and unweighted estimates; 2) oversample underrepresented raceethnicity groups until minimum cell counts (n≥1,000) are reached for reliable subgroup inference; 3) implement targeted, community-directed recruitment (faith-based, clinics, community centers) with graduate-student coordinators trained in culturally sensitive consent and personal data protection; 4) include deep ancestry measures and descriptive central tendency plus dispersion for all demographic variables; 5) conduct sensitivity analyses that account for clinical and depressive symptom burden and medication-taking status so effect estimates are not confounded by mental-health differences.
Editorial recommendation for authors and editors: require transparent tables that present raw counts, percentages, and recruitment sources, and require that any claims about generalizability explicitly state which ancestries and age groups remain underrepresented and therefore warrant cautious interpretation.
How robust are the replication and cross-cohort validations?
Require replication across at least three independent cohorts: each replication cohort should show the same direction of effect and a replication p-value <0.05 after directionality filtering, with a fixed-effect meta-analytic mean effect size within 1.5-fold of the discovery estimate. If discovery reached genome-wide thresholds, demand replication in cohorts whose combined N is at least two-thirds of the discovery sample or individual cohorts with N>20,000 when trait prevalence is low.
Quantify consistency using I² and leave-one-out: treat I² <40% as acceptable homogeneity; if I²>60% apply random-effects meta-regression including a categorical variable for measurement type, recruitment strategy (early vs later waves), and sex composition (proportion of boys). Run leave-one-out across all cohorts (example: across eleven cohorts when available) to identify single-cohort influence; flag signals that fall away when any one cohort is removed.
Harmonize phenotype definitions before meta-analysis: map cohort instruments (self-report, mother-report, clinical interview) to a common codebook, document items used for measuring partner/gender preference, and perform sensitivity analyses excluding mother-reported or proxy measures. Report subgroup results for boys and for other sex strata; present per-cohort beta, SE, sample N, and recruitment window to allow others to assess selection effects.
Test cross-ancestry replication separately and require consistent direction in at least 75% of ancestry-defined cohorts and nominal significance in at least one non-European cohort when possible. For polygenic scores, require independent R² >0.5% (continuous traits) or OR change >1.05 per SD in independent cohorts; report Nagelkerke R² and the mean change across cohorts rather than a single best-case number.
Address measurement variance explicitly: include a continuous variable coding “measuring method” in meta-regression, model age-at-assessment and early recruitment indicators, and estimate variance explained by cohort-level covariates. Ownership of heterogeneity means publishing cohort-level summaries so ourselves and others can re-weight or exclude cohorts with outlying protocols.
Interpretation guidance: treat small effect sizes linked to behavioral endpoints as biologically plausible but weakly predictive at the individual level; avoid claims that markers predispose a person deterministically. Cross-reference earlier measurement work (savin-williams, díaz, procidano) when mapping items, and state explicit views on limitations of mother vs self reports.
Transparency and reporting checklist: pre-register replication thresholds, publish full summary statistics and analysis code prior to or at time of publishing, include a table of eleven cohort-level metrics (N, sex ratio, mean age, recruitment mode, measurement instrument), and provide a registry of excluded cohorts with reasons so readers can assess potential biases in relationships reported.
What technical limitations (genotyping, phenotype definition) affect interpretation?
Recommendation: require harmonized, pre-registered phenotype definitions and dense genotyping with per-variant INFO >0.8, report ancestry-stratified results and replicate in at least one longitudinal cohort with measurements collected at multiple life stages.
Genotyping limitations: array coverage and imputation drive power and bias. Low-frequency and structural variants are missed by standard arrays; imputation quality falls in non-European ancestries (for example, latino subsets showed increased missingness), producing worse effect estimates and negative bias for rare alleles. Batch effects and per-sample call rates must be reported; exclude variants with call rate <98% or INFO <0.3. Report days between DNA collection and phenotyping when there are temporal gaps: there can be drift in sample handling that affects genotype calling. Polygenic scores built from sparse arrays are often driven by common variants that explain small variance in behaviour-related outcomes; present percent variance explained with confidence intervals.
Phenotype definition and measuring: self-identified labels (self-identified lgbt) differ from behaviour-based measures and romantic preference questions. Harmonize whether the primary measure is sexual behaviour, romantic attraction, identity, or fantasies – each was examined differently across cohorts (ganna and williams used divergent operationalizations). Use both binary and continuous measures where possible; provide z-scored continuous traits and raw counts. Measuring experiences rather than labels reduces misclassification: e.g., number of same-sex partners, age at first romantic experience, or frequency of same-sex days of sexual activity are more reproducible than a single adulthood label.
Timing and life-course: measures collected in adolescence vs adulthood yield different classifications. Longitudinal follow-up reveals fluidity: some participants self-identified at one wave and not at another. Recommend at least two waves separated by months or years; report changes by generation and report proportions with increased, decreased, or stable reporting. Present cross-tabulations for those who changed label and examine whether effect sizes differ for those who remained self-identified across adulthood.
Ascertainment and social context: recruitment via friends, clinics, or online panels biases who participates. Social desirability and stigma create negative measurement error that correlates with age, cohort, and local norms. Include sampling frame details and correct using inverse probability weights or sensitivity analyses. Report subgroup analyses for womens, male, and mixed-sex samples; identify any femalehigh cluster or sex-by-phenotype interactions rather than pooling without stratification.
| Limitation | Recommended mitigation |
| Phenotype heterogeneity (identity vs behaviour vs romantic) | Pre-register definition, collect multiple measures, report z-scored and binary versions, and present results for self-identified and behaviour-based groups |
| Ancestry stratification and imputation | Perform ancestry-specific GWAS, restrict low INFO variants, include diverse reference panels for latino and other groups |
| Low-frequency/structural variants | Supplement arrays with sequencing in subsets; report whether results are driven by common variants |
| Ascertainment via social networks (friends recruitment) | Model relatedness, adjust for household/clustering, and conduct sensitivity checks excluding friend clusters |
| Temporal variability and recall | Use longitudinal designs, report days between waves, and present stability matrices (who changed vs stayed) |
| Scale and transformation issues | Publish untransformed and z-scored phenotypes; show effect per SD and per-unit change |
Analysis reporting: present per-variant INFO, allele frequencies by ancestry, sex-stratified estimates (womens and male), and sensitivity excluding participants with ambiguous or single-wave self-identified labels. Provide effect sizes with standard errors, P-values, and heterogeneity statistics; when small effects are reported, avoid adaptive claims about darwinian selection unless supported by selection scans and functional follow-up. Cite authors by name when comparing methods (for example, ganna reported broad phenotype definitions while williams used more restrictive labels; david and others have examined measurement stability), and release summary statistics that allow others to replicate ancestry- and sex-specific analyses.
Interpretation checklist before claiming population-level relevance: (1) replicate in at least one longitudinal cohort; (2) show results are not driven by batch or recruitment biases; (3) quantify misclassification from self-identified vs behaviour measures; (4) test for heterogeneity by generation and by latino or other ancestry groups; (5) report whether removing participants with unstable labels makes associations stronger or worse. Following these concrete steps reduces misinterpretation and anchors findings in measured experiences rather than labels alone.
Practical implications for clinicians, counselors, and genetic counselors
Begin each encounter with a clear, specific statement: current DNA-based associations are probabilistic and have очень limited predictive value, so no predictive testing for sexual orientation should be offered for children or used as a sole basis for clinical decisions.
Use concrete figures when explaining risk: report that polygenic scores explain only a small fraction of variance (single-digit percentage points in most large analyses), that effect sizes vary by sample design and region, and that predictive scores trained on primarily white samples transfer poorly across race and are not clinically actionable. Cite professional guidance such as the American Psychological Association for ethical context: https://www.apa.org/topics/lgbtq/orientation.
Adopt a structured intake that captures behavior-based history with validated tools (e.g., Klein/Kinsey-style scales, sexual history checklists, and social support measures such as Procidano instruments) so clinicians can separate identity, behavior, and mental health needs. Record inventory results and symptom scores, and track change over days or weeks when monitoring therapy response.
When communicating research findings, avoid deterministic language; instead explain that most genetic components examined so far are probabilistic and contextual. An editorial on prior work noted that non-representative design helped bias to persist; clinicians should therefore comment on sampling limits when patients cite articles. Explain that some publications examined regional or northeast samples, womens cohorts, or those that took convenience recruitment, which limits generalizability.
Assess minority stress and exposure to anti-gay stigma explicitly: screen for experiences of discrimination, coming-out challenges, and internalized homophobia or biphobia. Offer referrals for mental health care when screening indicates reduced functioning. Use behavior-based screening items alongside mental health measures to identify central drivers of distress rather than attributing symptoms to biology alone.
For genetic counselors: include a scripted explanation of what a polygenic score does and does not mean, include family history examining relevant components, and document informed consent that patients sought testing after being helped to understand limitations. Recommend deferral of predictive testing for orientation-related traits; discuss potential harms such as discrimination, insurance impact, and misuse by others.
Clinical teams should adopt a representative-data approach when interpreting new findings: flag samples that are predominantly white or region-specific, note if bi-attraction subgroups were underpowered, and treat subgroup results as hypothesis-generating rather than conclusive. Klesse and others have examined social dimensions that interact with biological components; include social context when formulating care plans.
Operational recommendations: (1) add a short consent script to electronic records explaining low predictive value; (2) include a documentation checkbox that counseling covered social, legal, and medical implications; (3) use validated inventories and behavior-based measures at baseline and follow-up; (4) create a referral list for community supports such as local ball organizers and peer groups, which have helped build resilience.
Monitor for bias in care: audit charts quarterly for language that frames orientation as deterministic, track rates of referrals to mental health vs genetics, and provide staff training that reduces ignorance and anti-gay assumptions. These steps produced reduced miscommunication in pilot clinics and were described as a useful, practical component of clinician education in a recent article on clinical translation of genomics in medicine.
Keep communications concise and patient-centered: acknowledge unanswered questions, persist in explaining uncertainty, and emphasize that identity, behavior, and attraction can coexist within varied patterns (including bi-attraction). Such an approach fosters trust, supports autonomy, and is a more ideal clinical stance than speculative prediction.
Should genetic findings change intake questions or family histories?
Recommendation: Do not add biomarker-specific items to universal intake; instead deploy an optional, consented family-history module that captures parental composition, adoption status, maternal and paternal histories, and relevant cognitive and mental-health measures, with clear limits on clinical use.
- Обоснование: регрессионный анализ из недавних статей показывает, что биологические ассоциации часто указывают на более высокие шансы для некоторых исходов, но объясняют небольшую долю дисперсии; многие эффекты уменьшаются или исчезают, как только учитываются демографические ковариаты и структура семьи.
- Когда включать: добавляйте модуль только для пациентов или участников исследований, которые явно заинтересованы и дали письменное согласие, или когда информация изменит клиническое ведение или оценку риска для здоровья.
- Конфиденциальность и хранение: храните ответы отдельно, ограничьте доступ и документируйте цель; не объединяйте необязательные ответы в поля ЭМК по умолчанию без согласия пациента, поскольку это повышает риск для конфиденциальности.
- Стандарты анализа: требовать регрессионные модели с поправкой на происхождение, возраст родителей, социально-экономические показатели и семейную кластеризацию; сообщать о дисперсии и избегать чрезмерной интерпретации малых эффектов.
Предлагаемые позиции для включения (дополнительный модуль):
- Состав семьи: “Вы приемный ребенок? (да/нет)”; “Присутствовал ли биологический отец в детстве? (присутствовал/отсутствовал/неизвестно)”.
- Родительские идентичности (опционально): “Если желаете, укажите самоопределенные идентичности родителей (варианты: мужской, женский, трансгендер, лесбиянка, гей, бисексуал, другое)’. – включить явный отказ от ответа.
- Семейное здоровье: “Наличие психиатрических, когнитивных нарушений или нарушений развития у родственников первой или второй степени родства (перечислить и указать возраст начала).” – включая такие показатели, как трудности в обучении, СДВГ, серьезные расстройства настроения.
- Влияние факторов на протяжении жизни: “Известны ли какие-либо пренатальные воздействия, заболевания матери во время беременности или нарушения ухода за ребенком в раннем детстве?”
- Согласие на участие в исследовании: “Вы согласны на привязку данного модуля сбора семейного анамнеза к исследовательским наборам данных? (да/нет)”.
Операционный чек-лист для клиник и исследовательских групп:
- ## Согласие на участие в исследовании **Пожалуйста, внимательно прочитайте эту информацию перед тем, как дать свое согласие на участие.** **Цель сбора данных:** Мы собираем следующую информацию [ЧЕТКО ПЕРЕЧИСЛИТЬ ТИПЫ СОБИРАЕМЫХ ДАННЫХ, НАПРИМЕР: демографические данные, ответы на анкеты, данные медицинских осмотров] для того, чтобы [ЧЕТКО ОПИСАТЬ ЦЕЛЬ ИССЛЕДОВАНИЯ, НАПРИМЕР: лучше понять факторы, влияющие на здоровье сердца, оценить эффективность новой программы оздоровления]. **Использование результатов:** Собранные данные будут использованы для [ЧЕТКО ОПИСАТЬ, КАК БУДУТ ИСПОЛЬЗОВАНЫ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ, НАПРИМЕР: анализа тенденций здоровья, разработки более эффективных стратегий профилактики заболеваний, публикации результатов в научных журналах]. Ваши данные будут объединены с данными других участников, и индивидуальные ответы не будут раскрыты за пределами исследовательской группы. **Влияние на оказание медицинской помощи:** Ваше участие в этом исследовании является добровольным. Ваши ответы и предоставленная информация не повлияют на вашу текущую или будущую медицинскую помощь, за исключением случаев, когда результаты будут клинически значимыми и потребуют внимания вашего лечащего врача. В таком случае, мы свяжемся с вами лично и, с вашего согласия, сообщим эту информацию вашему врачу.
- Обучите сотрудников приемного отделения избегать предвзятых суждений и использовать нейтральные формулировки; разыграйте сценарии (например: не следует предполагать наличие определенных черт у Давида, чей отец отсутствовал и которого усыновили).
- Индексируйте дополнительные ответы в ЭМК с тегами ограниченного доступа и журналами аудита; не предоставляйте модули для выставления счетов и внешних порталов без повторного согласия.
- Требуйте от аналитических конвейеров представления размеров эффекта, доверительных интервалов и процента объясненной дисперсии, а не бинарных меток; используйте методы диагностики регрессии для проверки устойчивости.
- ## Семейный анамнез и ваше здоровье: Краткие ответы на часто задаваемые вопросы **Почему врачи спрашивают о семейном анамнезе?** Семейный анамнез (история болезней ваших родственников) может дать врачу информацию о риске развития определенных заболеваний, таких как болезни сердца, диабет или некоторые виды рака. Эти знания помогают в разработке плана профилактики и ранней диагностики. **Насколько важен семейный анамнез для моего здоровья?** Он важен, но не является определяющим фактором. Семейный анамнез – лишь один из многих факторов, влияющих на здоровье. Образ жизни (питание, физическая активность, курение), факторы окружающей среды и этническое происхождение также играют значительную роль. **Если у моих родственников были определенные болезни, значит ли это, что они будут и у меня?** Не обязательно. Наличие заболевания в семейном анамнезе лишь увеличивает риск, но не гарантирует его развитие. Многие болезни развиваются из-за сочетания генетической предрасположенности и внешних факторов. **Влияет ли мое этническое происхождение на интерпретацию семейного анамнеза?** Да. Некоторые заболевания чаще встречаются в определенных этнических группах. Врач учитывает эту информацию при оценке вашего риска. **Что делать, если я не знаю свой семейный анамнез?** Постарайтесь узнать как можно больше информации у своих родственников. Даже неполные сведения могут быть полезны. Если узнать ничего не удается, сообщите об этом своему врачу. В этом случае акцент будет сделан на других факторах риска и профилактических мерах. **Значит ли наличие «хорошего» семейного анамнеза, что я могу не беспокоиться о своем здоровье?** Нет. Даже если у ваших родственников не было серьезных заболеваний, важно вести здоровый образ жизни и регулярно проходить профилактические осмотры. Семейный анамнез – это лишь часть общей картины вашего здоровья. **Важно помнить:** Семейный анамнез – это инструмент, помогающий оценить риски, а не предсказать будущее. Здоровый образ жизни, регулярные медицинские осмотры и открытое общение с вашим врачом – ключ к поддержанию вашего здоровья.
Примеры виньеток, обозначающих надлежащее использование:
- Случай A: Клиника Джонса добавляет модуль для исследовательской группы; результаты регрессии показывают более высокий показатель конкретного отчета, но эффект снижается после учета социально-экономических показателей и возраста матери – сообщить результат с процентом учтенной дисперсии.
- Случай B: Команда Patel использует модуль, когда пациент заинтересован в репродуктивном консультировании, и документирует семейные анамнезы по материнской и отцовской линиям, которые значимо влияют на принятие решений о медицинской помощи.
- Избегайте клинических команд, собирающих данные о гендерной идентичности родителей без согласия или клинического обоснования; избегайте рутинных запросов о партнерах другого пола или личных особенностях, если это напрямую не связано с уходом за пациентом.
Итоговое заключение: вопросы о поступлении и семейном анамнезе должны акцентировать выбор пациента, прозрачное согласие, строгую аналитическую отчетность (на основе регрессии, учтенная дисперсия) и уважение к разнообразию; собирайте информацию о матери, отце, приемных и отсутствующих родителях, когда это непосредственно связано со здоровьем или когда пациент проявляет явный интерес.
Когда обсуждать результаты генетических исследований с клиентами или пациентами?
Обсуждайте результаты оперативно, когда обнаружение повлияет на тактику лечения или когда пациент запросит раскрытие информации: в случае обнаружения варианта, который влияет на выбор лекарства, запланируйте очное или видео-обсуждение в течение семи календарных дней, задокументируйте информированное согласие и уточните вопросы владения данными.
Если исследователи взяли образцы у несовершеннолетних или уязвимых групп, привлекайте опекунов: когда образцы получены от подростков или молодежи, предоставьте информацию об уведомлении опекуна и процессах согласия; для участников возраста выпускников относитесь к согласию как к согласию взрослого, но подтвердите понимание респондентом и любые ранее зарегистрированные предпочтения.
Контекстуализируйте числовые результаты: сообщайте необработанный балл, процентиль и направление, указывайте, насколько результат соответствует согласованным контрольным значениям, и представляйте сравнения подгрупп (примеры: региональная выборка Запада, латиноамериканская подгруппа, мичиганская когорта), чтобы показать различные базовые риски по сравнению с общей популяцией.
Если результат связан с повышенным риском или новым симптомом, опишите конкретные последующие шаги: установите интервалы мониторинга, перечислите признаки, требующие немедленного внимания, предоставьте дополнительные консультации и конкретные направления, которые могут помочь, задокументируйте, кто составил план ухода и когда, и избегайте вынесения окончательных поведенческих прогнозов.
Обеспечение научного контекста и варианты коммуникации: объяснение неопределенности, описание ожидаемой изменчивости доказательств с течением времени, предоставление цитат и возможность повторного обращения при желании провести повторный анализ, указание контактного лица в клинике, например, Williams, для последующего наблюдения, а также объяснение того, что может произойти в случае изменения доказательств или рекомендаций, и кто предложит дальнейшие шаги.
New Study Reveals Genetic Insights into Same-Sex Attraction">
10 Sure Signs You’ve Found the Right Person to Fall in Love With">
Courtship Myths Debunked – Truths About Dating & Relationships">
What My Insecure Loser Friend Taught Me About Self-Esteem and Confidence">
What to Do When Your Lover Body-Shames You – Respond, Set Boundaries & Heal">
Are Millennials Socially Advanced or Anti-Social? Research & Insights">
10-Step Checklist to Consider Before Giving a Second Chance in Relationships">
Как сказать человеку, что вы его любите – слова, действия и практические советы">
10 Signs You’re the Problem in Your Relationship — Fix It">
How to Handle an Angry Partner – 8 Proven Strategies">
How I Stopped Controlling My Partner and Took Responsibility for My Own Happiness">